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People with a history of injecting drug use are a priority for eliminating blood-borne viruses and
sexually transmissible infections. Identifying them for disease surveillance in electronic medical
records (EMRs) is challenged by sparsity of predictors. This study introduced a novel approach to
phenotype people who have injected drugs using structured EMR data and interactive human-in-the-
loopmethods.We iteratively trained random forest classifiers removing important features and adding
new positive labels each time. The initial model achieved 92.7% precision and 93.5% recall. Models
maintained >90% precision and recall after nine iterations, revealing combinations of less obvious
features influencing predictions. Applied to approximately 1.7 million patients, the final model
identified 128,704 (7.7%) patients as potentially having injected drugs, beyond the 50,510 (2.9%) with
known indicators of injecting drug use. This process produced explainable models that revealed
otherwise hidden combinations of predictors, offering an adaptive approach to addressing the
inherent challenge of inconsistently missing data in EMRs.

In Australia, people who have injected drugs account for 80% of hepatitis C
virus (HCV) infection and are at high risk of cooccurring infections such as
HIV and other blood-borne viruses (BBV) and sexually transmissible
infections (STI)1–3. BBVs and STIs are associated with significant morbidity
and mortality and hence targeted for global elimination as a public health
threat by 20304. As such, people who have injected drugs are a priority
population for enhanced BBV/STI prevention and care efforts requiring
targeted public health surveillance measures5,6.

The Australian Collaboration for Coordinated Enhanced Sentinel
Surveillance of BBVs and STIs (ACCESS) is a national sentinel surveillance
system, established to inform Australia’s BBV/STI response. ACCESS
routinely extracts de-identified electronic medical records (EMR) from a
network of primary care clinics that test, diagnose and/or treat high case-
loads of patients for BBVs and STIs with the aim of representing affected
populations7. These EMRs provide valuable patient-level data for

monitoring disease burdenand evaluating health service use amongpriority
populations7,8, however effectively phenotyping people who have injected
drugs within ACCESS EMRs remains a challenge.

The process of phenotyping involves identifying and classifying
patients with similar observed characteristics. Traditionally, phenotyping
for public health surveillance tasks has relied on subject matter expertise to
derive a set of criteria using structured EMR data, including diagnostic
codes, laboratory test requests, results, and prescriptions9–11. However,
phenotyping methods have evolved to handle increasingly complex criteria
and large volumes of high-dimensional data withmixed data structures10–13.

Using an expert-derived rule-based method to define phenotypic cri-
teria works well when exposures or diagnoses are clearly coded9. However,
there is currently no systematic or standardized method for recording or
coding behavioral and social risk factors like injecting drug use (IDU) and, if
disclosed, they are often recorded in the clinical notes as free text14,15.
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Previous studies have developed algorithms to identify IDU either by
combining proxy International Classification of Diseases codes (ICD-
codes)16–18 or by extracting IDU information from clinical notes using
natural language processing (NLP) methods14,19. However, ICD-codes are
not recorded in primary care EMRs, and privacy issues surrounding the
sharing of clinical notes mean these are not utilized in ACCESS. Therefore,
the ability ofACCESS todetect IDU is limited to any indications thatmaybe
recorded in the structuredor semi-structured EMRvariables extracted from
the sentinel clinics. These indications include self-reported IDU and a
prescription for opioid agonist treatment (OAT), respectively. Self-reported
IDU is completed by approximately 2.5% of patients as part of a behavioral
risk assessment only at some sexual health clinics and a few general practice
clinics that specialize in the health of gay, bisexual and other men who have
sexwithmen.OATprescriptions have been used as a proxy to identify other
people who have injected drugs within ACCESS, however, these apply to
0.7% of patients mostly attending general practice clinics and drug and
alcohol services. Using only these known criteria would identify a biased
subsample of people who have injected drugs in ACCESS, therefore this
problem requires an algorithm that can detect less obvious phenotypes in
patient EMRs that strongly suggest a history of IDU.Manual exploration of
novel predictors is hindered by the heterogeneity of multi-centre patient
records, the sparseness of data across all variables, the complexity of inter-
actions between available variables and the large volumes of data required to
find sufficient examples of IDU9,11,20

The recent application ofmachine learning to phenotyping tasks on
EMRs has shown its capacity to interpret complex interactions and
nonlinear relationships in large volumes of observational data, provid-
ing an automated and data-driven approach to discovering novel
phenotypes9,21. Interactive methods of machine learning that integrate
subject matter expertise offer further advantage when key indications of
risk are missing for much of the patient population. Human-in-the-loop
feature exploration allows experts to iteratively discover novel pheno-
types, potentially producing more accurate algorithms without relying
solely on labeled data, and enabling explainable decisions, which is
essential in healthcare where the input of various collaborating experts is
required20,22–24.

Our aim was to evaluate an interactive machine learning method as a
new approach to phenotyping from EMRs that can be integrated into the
development of routine public health surveillance procedures.

Results
Characteristics of people who have injected drugs
Table 1 compares selected characteristics of the patients assigned the
positive and negative class labels in the initial dataset. Most of the people
who have injected drugs were identified from general practice (50%) and
community health clinics (38%), both of which provide several drug and
alcohol services. Many of these drug and alcohol services were recruited as
sentinel sites in ACCESS to monitor a large Victorian state-based initiative
to increase HCV testing and treatment among people who have injected
drugs (https://ecpartnership.org.au) hence patients residing in Victoria are
overrepresented (85%).

The characteristics of the positive class were comparable to those
reported for other Australian cohorts of people who have injected drugs25,26,
67%male, 10%Aboriginal orTorres Strait Islander, amedian age of 42 years
(SD10.01 years, IQR13 years) at theirmost recent visit, 66%ever prescribed
OAT and an HCV prevalence of 51.5%. In comparison, patients from the
randomsamplewere generally younger (median age 32 years, SD17.1 years,
IQR 22 years), differed significantly on all characteristics (adjusted
p < 0.007) and hadmuch lower rates ofOATprescription andHCV testing.

Iterative model performance
We iteratively trained random forest classifiers on balanced labeled datasets
starting with 88 features and 2422 positive class labels. In each iteration we
removed themost important feature andaddednewpositive labels by expert
review of false positive predictions. The initial model demonstrated the

highest predictive accuracy (92.8%, CI:92.2%–93.5%) on the testing data
(Table 2). Performance declined with the removal of the highest ranking
feature in each iteration as expected, although after removing nine of the
most important features the model still achieved recall and precision above
90%. Performance gains were observed in some iterations, likely due to the
incremental addition of positive class labels.

We stopped at 19 iterations when there was no plausible reason for the
most important feature. The accuracy and F1-score were approximately
85% after 18 important features were removed, which suggests that other
features may be closely correlated with the set of important features.

Feature importance and new phenotypes
The top three most important features for predicting the class label were
OAT prescription, HCV test missing and the rate of HCV testing (Fig. 1).
Given the high prevalence of HCV among people who have injected drugs
andOAT being a known indication of IDU inACCESS, these features were
expected to rank highly. Prescription for palliative care medicines and care
provided by a doctor also ranked in the top five most important features in
the initial model, which aligns with the documented high prevalence of
chronic pain and medical complications related to IDU27,28.

As features were removed with each model iteration, more generic
features emerged as highly important for class label predictions such as
features related to the longevity of a patient’s care within ACCESS clinics.
i.e., the total number of clinic visits and years between first and last visit
(person time). This may be attributed to the complex healthcare needs of
peoplewhohave injected drugs, the public funding of primary health care in
Australia and the specialized and supportive services provided by partici-
pating clinics to the most affected populations29.

Another example of a less obvious feature found was prescriptions for
medicines generally available through community pharmacies (general
medicines prescribed), which can include opioid, benzodiazepines, and
stimulant medications. This can be explained by the co-occurrence of
psychiatric, sleep and attention deficit disorders with IDU30.

Some highly ranked features had incomplete data; for example,
Prescriptions records were available for 42% of patients (see Methods,
Study Data 3) and type of care provider was available for 45% of
patients (Supplementary Table 1). Additionally, the iterative process
highlighted the significance of features representing missing data,
including HCV test missing, prescription missing, and visit type
missing (Fig. 1), suggesting that the absence of certain data points can
contribute to feature combinations associated with the class label
predictions.

Final model performance and feature combinations
The final phenotyping model was trained using the last labeled dataset,
which included an additional 163positive class labels, a newrandomsample
of 2585patients assigned the negative label and all 88 features. Accuracywas
92.8% (95% CI: 92.1%–93.4%), precision was 92.9%, recall was 92.6%, and
F1-score was 92.8%.

A SHAP analysis indicated how the top 20 features influenced the final
model’s predictions (Fig. 2). The most important features for classifying
patients were related to OAT prescription, HCV testing and characteristics
of clinic visits, i.e., these features had either a large positive or negative
influence on model predictions. The model was influenced in the direction
of predicting a positive class label when a patient had OAT prescribed
(value = 1) and in the direction of predicting a negative class label when a
patient did not have OAT prescribed (value = 0). Where features were
relatively evenly split, it indicated that while these features were still
important to the model predictions, it was the collective combination of
feature values that influenced the model decisions.

Based on the feature combinations learned from the iteratively
labeled data, the model generated prediction scores between 0 and 1 for
each patient and utilized a decision boundary of 0.5 for class predictions.
Figure 3 provides an example of one positive and one negative class
prediction respectively to demonstrate the collective influence of each
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patient’s unique set of feature values on their prediction score and hence
their class prediction.

Weapplied thefinalmodel to anunlabeleddataset of 1,716,534patients
with the same88 featuresprepared.Of these, 50,510 (2.9%)hadan indication
of IDU in their EMRs (i.e., self-reported IDU or an OAT prescription) or
provider-recorded IDU (i.e., assigned the positive label). Maintaining the
default decision boundary of 0.5 for class predictions, the final model
identified an additional 128,704 (7.7% of remaining patients) as potentially
people who have injected drugs, based on their unique set of feature values
resembling those of patients with direct indications of IDU in the training
dataset.

Discussion
In this study we tested an interactive machine learning approach for a use
case of identifying people who have injected drugs who were otherwise

hidden in structured EMR data, demonstrating an improvement on tradi-
tional expert-derived rules for phenotyping risk groups for public health
surveillance.

Ours is thefirstmachine learningmodel to phenotype a behavioral risk
group using EMR data in the absence of clinical notes10,11. Compared to a
prior study using hospital admissionnotes specifically for identifying people
who have injected drugs, our finalmodel achieved a higher F1-score (92.8%
vs 90.5%) and precision (92.9% vs 89.0%) and the same recall (92.6%)19. A
strength of having access to clinical notes however is the confirmation that a
patient has not injected drugs, thereby providing true negative examples.
ACCESSon theotherhandneededanapproach forfindingpatientswho are
likely to have injected drugs in a large cohort of unlabeled examples. Our
finalmodel achievedhighperformancewithout relyingondirect evidenceof
IDU and this was sustained even after 18 important features were incre-
mentally removed, indicating that itwas learning to rely on acombinationof

Table 1 | Characteristics of patients in the initial labeled dataset by class label

People who have injected drugs Random sample

(positive label = 2422) (negative label = 2422)

Characteristic Category n % n %

Sex Male 1626 67.13 1271 52.48

Female 778 32.12 1084 44.76

Other/Unknowna 18 0.74 67 2.77

Aboriginality Non Indigenous 1246 51.45 1339 55.28

Aboriginal/
Torres Strait
Islander

235 9.70 62 2.56

Unstated 537 22.17 377 15.57

Missing 404 16.68 644 26.59

Region of birth Australian born 707 29.19 698 28.82

Overseas born 108 4.46 485 20.02

Missing 1607 66.35 1239 51.16

Clinic type last
visited

General
practice (GP)

1215 50.17 670 27.66

Community
health clinic

918 37.9 345 14.24

Gay men’s
health GP

237 9.79 363 14.99

Sexual health
clinic

49 2.02 1005 41.49

Hospital
outpatient clinic

3 0.12 39 1.61

State at last
residence

Victoria 2048 84.56 852 35.18

New
South Wales

169 6.98 859 35.47

Queensland 60 2.48 190 7.84

South Australia 56 2.31 117 4.83

Australian
Capital Territory

38 1.57 71 2.93

Western
Australia

26 1.07 152 6.28

Tasmania 12 0.50 21 0.87

Missing 13 0.54 160 6.61

OAT prescribed Yes 1606 66.31 34 1.40

No 816 33.69 2388 98.60

HCV testingb Tested 1899 78.41 340 14.04

Prevalencec 978 51.50 d 24 7.06 d

HCV hepatitis C virus,OAT opioid agonist treatment. aGrouped together due to small numbers, bEver tested for the presence of hepatitis C antibody or ribonucleic acid, cEver diagnosed positive on either
test, dNumber diagnosed as a proportion of the number of people tested.P-values are not shown in the table as all comparisonswere statistically significant (adjustedp < 0.007) based on chi-squared tests
with a Bonferroni correction for multiple comparisons.
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a broad range of features for classification. Our iterative approach to
leveraging subject matter expertise is well-suited for identifying positive
examples in observational healthcare where key risk factors are frequently
absent for many patients.

In contrast to many studies reporting predictive models using EMRs,
our approach maximized the number of variables used31. Our iterative

human-in-the-loop feature exploration demonstrated the value of system-
atically exploring all available features, including those representingmissing
data. The advantage of this approach as well as leading to more accurate
phenotyping, is that it can capture a broader range of patient characteristics
and behaviors providing a more comprehensive understanding of the
patient population. This approach is less likely to be of value for datasets

Table 2 | Model performance metrics, number of patients relabeled positive and highest ranked feature in each iteration

Iter. Features Accuracy 95% Confidence
Intervala

F1-score Precision Recall Relabeled Highest ranked
feature

Feature
values

0 88 92.85 92.17 93.52 93.09 92.72 93.46 11 OAT Prescribed 1=Yes, 0=No

1 87 90.34 89.57 91.12 90.80 88.66 93.05 10 HCV test missing 1=Yes, 0=No

2 86 91.41 90.67 92.14 91.78 90.01 93.61 11 HCV test rate Continuous

3 85 90.19 89.42 90.96 90.44 87.95 93.08 3 palliative care
medicines

1=Yes, 0=No

4 84 89.73 88.94 90.52 89.97 88.80 91.18 5 total clinic visits Integer

5 83 89.51 88.71 90.30 89.76 87.47 92.18 10 care provider doctor 1=Yes, 0=No

6 82 90.69 89.94 91.44 90.85 89.61 92.12 5 general medicines
prescribed

1=Yes, 0=No

7 81 88.97 88.16 89.78 89.39 86.88 92.05 8 years between first
and last visit

Continuous

8 80 90.07 89.30 90.85 90.55 87.71 93.58 8 prescription missing 1=Yes, 0=No

9 79 90.50 89.75 91.26 90.74 90.10 91.40 9 visit type missing 1=Yes, 0=No

10 78 88.48 87.66 89.31 88.60 89.06 88.14 5 care provider nurse 1=Yes, 0=No

11 77 87.38 86.53 88.24 87.62 87.11 88.14 10 HIV test rate Continuous

12 76 87.11 86.25 87.96 87.90 87.43 88.37 9 total unique
postcodes

Integer

13 75 87.29 86.43 88.14 87.34 87.91 86.77 7 HIV test missing 1=Yes, 0=No

14 74 87.52 86.67 88.36 87.67 87.28 88.07 8 HIV negative test 1=Yes, 0=No

15 73 85.15 84.26 86.07 85.59 84.00 87.24 11 clinic visit in 2017
or 2018

1=Yes, 0=No

16 72 86.11 85.23 86.99 86.44 84.41 88.57 8 community health
clinic

1=Yes, 0=No

17 71 85.45 84.55 86.34 85.88 83.93 87.92 11 unique clinics visited Integer

18 70 86.41 85.54 87.28 87.03 83.39 91.00 10 total clinic types
visited

Integer

19 69 85.50 84.61 86.40 85.71 84.12 87.37 4 clinic visit in 2019
or 2020

1=Yes, 0=No

Performancemetrics havebeenpresentedaspercentages, roundedup to twodecimal places. a95%confidence interval of accuracy for eachmodel, calculatedusing theWilson score intervalmethod.OAT
Opioid agonist treatment, HCV Hepatitis C virus, HIV human immunodeficiency virus.

Fig. 1 | The five most important features and their order of importance in each iteration. Colors were assigned to each data group: blue=Prescriptions, green=BBV/STI
pathology results, purple=Clinic visits. Different shades of the same color were used to distinguish data groups. Person time=years between first and last visit.
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where there are few features or where expert-derived rules could cover all
available features.

The final model’s positive classification of an additional 7.7% of
patients demonstrates its potential to extend the identification of people
who have injected drugs in ACCESS beyond using traditional indications
and increase the pool of candidates included in relevant surveillance ana-
lyses. Hence this model could be incorporated into Australian BBV/STI
surveillance systems to monitor disease burden among people who have
injected drugs and inform future prevention and care interventions.

We intend to use the phenotyping model within a risk stratification
framework that segments patients according to their likelihood of IDU. By
adjusting the decision boundary for classifying patients as positive using
their prediction scores, we are able to identify concentrations of patients

who aremore or less likely to have ahistory of IDU.This provides a practical
method for reducing uncertainty in unlabeled data and a more nuanced
approach for addressing varying surveillance objectives32. For example, by
stratifying individuals basedon their predicted likelihoodof IDU,healthcare
resources can be allocatedmore efficiently and interventions can be tailored
more specifically.

This study had several limitations. Firstly, themodel performancemay
havebeen skewedgiven thatmodels derived fromclinical data tend to reflect
patterns influenced by the care provided and the data recorded for similarly
presenting patients33. Also in this case,model performancemay relate to the
somewhat selective nature of ACCESS data as participating clinics are
chosen based on the care they provide, and variables are only extracted if
they are relevant to BBV and STI diagnosis andmanagement. Secondly, the
labeled datasetmay have created bias due to an overrepresentation of clinics
fromVictoria and limited completion of variables such as Indigenous status
and region of birth. Although we sought to mitigate this bias by omitting
features related to clinic location and thosewith quasi-constant values, there
may still be residual bias in our data. Surveillance systems can have sig-
nificant ethical implications, therefore future work should investigate
algorithmic bias to determine whether the model performs fairly or dis-
proportionately impacts different demographic groups.

Thirdly, decisionsmade duringmodel developmentmay have affected
the overall predictive performance. One example is the exclusion of features
thatmaybe important forphenotyping suchas self-reported risk assessment
data whichwere not used as features but were instead used for expert review
of false-positive predictions. These data are collected only at certain urban
clinicswith high caseloads of gay, bisexual and othermenwhohave sexwith
men, which could limit the generalizability of the model. Additionally,
features requiring extensive standardization efforts - due to either hetero-
geneous data collection across clinics (e.g., drug type and recency of injec-
tion) or the need for text preprocessing (e.g., laboratory test names in the
Test Requested dataset) - were also excluded to maintain timeliness of the
study.Another example is the decision touse conservative relabeling criteria
which may have limited how well the iterative approach finds new impor-
tant features. Finally, the decision to rely on random forest, without com-
paring it to alternativemachine learning algorithms,may have hindered our
ability to evaluate and select the most suitable modeling approach. Future
model development will involve the inclusion of more comprehensive
data as they become available and revisiting conservative relabeling.

Fig. 2 | The SHAP value impact on the final model predictions in the test dataset.
Individual violin plots indicating the density and frequency of SHAP values are
stacked by importance down the Y axis for each of the top 20 features. The X axis
shows the positive or negative contribution of each feature’s values to the model’s
prediction.

Fig. 3 | The SHAP value impact on a single positive and negative class prediction.
The bottom of a waterfall plot starts at the base value of the model output (0.5) and
then each row shows how the positive (red) or negative (blue) contribution of each

feature moves the prediction score to 0.732 for a positive class prediction (a) and
0.358 for a negative class prediction (b).
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Additionally, exploring the potential of alternative machine learning algo-
rithms may help improve model accuracy and adaptability.

We believe our approach can be applied to other phenotyping tasks
and other healthcare datasets with similar challenges, offering a valuable
tool for public health surveillance. The iterative human-in-the-loop
approach, combined with established machine learning techniques
provides an accessible and transparent refinement process that incor-
porates human expertise to ensure the model’s robustness and adapt-
ability to various healthcare contexts. By using these methods we have
expanded the range of approaches available to public health practi-
tioners and can better identify and characterize priority populations for
routine surveillance in a way we have not been able to before. This
approach does depend on the process of expert manual review to relabel
false positive predictions, which may introduce challenges when applied
to different healthcare contexts, patient populations, or where expert
manual review is not available. Fortunately, ACCESS is a collaboration
between researchers, healthcare providers and informaticians and has
the infrastructure to continually develop and evaluate data systems. We
plan to leverage this existing system of human input and expert invol-
vement to integrate the model into ongoing ACCESS processes.

Despite demonstrating promising results, the model’s real-world per-
formance remains untested. The next step is to evaluate the model in a
scenario that closely mirrors real-world conditions to confirm its repro-
ducibility, inform model refinement and mitigate the identified limitations
and biases34. Collaborative efforts with subject matter experts and stake-
holders will be necessary tofine-tune themodel and ensure it is alignedwith
its intended purpose.

Our study demonstrated a new approach for phenotyping populations
that would otherwise not be captured within EMR data using traditional
expert-derived rules. We used it for people who have injected drugs and
expect it to generalize to other surveillance tasks and health service data that
are often missing and heterogeneous.

Methods
Study data
Data used in this studywere extracted on 13 July 2022 from77 clinics, when
the ACCESS database included approximately 2.4 million patients and
17.15 million clinical visits with records dating back to 1 January 2009.
ACCESS uses privacy preserving EMR data extraction software
GRHANITETM (https://www.grhanite.com) to automate the selection and
transfer of demographic and clinical variables that are relevant to BBV and
STI diagnosis and care7. Use ofACCESS data for this studywas approved by
the ACCESS Executive Committee and covered under ACCESS ethics
approvals. Ethics approval for ACCESS was provided by the Human

Research Ethics Committees at Alfred Hospital (248/17), Central Australia
(CA-19-3355), Northern Territory Department of Health and Menzies
School of Health (08/47), University of Tasmania (H0016971), Aboriginal
Health and Medical Research Council (1099/15), ACON (2015/14), Vic-
torian AIDS Council / Thorne Harbour Health (VAC REP 15/003), Wes-
tern Australian Aboriginal Health Ethics Committee (885), and St.
Vincent’s Hospital (08/051). As ACCESS collects de-identified data under
the auspices of public health surveillance, individual patient consentwas not
required and has been waived by all ethics committees. Individual patients
could opt-out of the surveillance system if they wished.

Data are extracted in relational tables in their raw form and undergo
extensive processing, record linkage and quality assurance to produce
curated datasets ready for analysis35,36. Those used in this study are sum-
marized in Table 3.

Data are extracted for all patients and clinic visits, but pathology and
prescription data are extracted only when related to BBVs and STIs. All
patients with an EMR inACCESS are in the Linkage dataset, most of whom
have a record in the Demographics dataset and one, none or multiple
records in the remaining datasets. Patients without a record in the Clinic
Visits dataset were excluded from the study, leaving approximately 1.7
million patients who had at least one Clinic Visit record.

Feature generation
To find variables not previously considered for phenotyping people who
have injected drugs, all available variables from the selected ACCESS
datasets were investigated for use asmodel input. Variables were excluded if
they required extensive text processing, contained redundant descriptors, or
were derived from other variables. Some variables were excluded to avoid
biases (e.g., clinic names and locations) and strong dependencies on specific
data (e.g., positive HCV test results and self-reported IDU). These variables
were instead used to investigate the quality of predictions.

Temporal variables were transformed into binary representations
of whether the patient had any record of the event (i.e., attended a type of
clinic, had a test requested, was prescribed a medication, etc.) and dis-
crete numeric features containing the frequency of repeated events such
as total number of visits or total number of tests. Continuous numeric
features were created by calculating the rate of visits or tests using years
between first and last visit as a denominator. Year of birth was binned
into ranges to represent generations, and year of clinical visit was binned
into two-year periods.

Patient residential postcodes were linked to the Australian postal
regions to determine remoteness and to the Australian Socio-Economic
Index for Areas (SEIFA) to rank relative socio-economic advantage and
disadvantage according to the 2016 Census (https://dbr.abs.gov.au).

Table 3 | Summarized patient information within ACCESS curated datasets used in this study

Dataset Unique patients Description

Linkage 2,413,172 Link_id; Clinic name; clinic type

Demographicsa 2,404,867 Year of birth; Sex at birth; Country of birth; Language spoken;Aboriginal or TorresStrait Islander; Postcode of residence; Ever
reported male-to-male sex; Ever reported condomless sex; Ever prescribed HIV preexposure prophylaxis, Self-reported
injecting drug use

Clinic Visits 2,107,483 Date of visit; Type of visit; Healthcare provider type; Reason for visit

Tests Requested 497,705 Test names; Reason for test request; Date of test request; Drug screen

Hepatitis C Pathology 260,803 Test name; Date of test; Test result; Result interpretation

HIV Pathology 516,788 Test name; Date of test; Test result; Result interpretation

Syphilis Pathology 490,120 Test name; Date of test; Test result; Result interpretation

Chlamydia Pathology 746,242 Test name; Date of test; Test result; Result interpretation

Gonorrhea Pathology 592,419 Test name; Date of test; Test result; Result interpretation

Prescriptions 889,931 Date of prescription; Drug name; Drug tradename; Reason for prescription
aIncludes some data collected via behavioral surveys and other variables derived from rule-based algorithms applied during routine data processing to create one value per patient, HIV human
immunodeficiency virus.
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A binary feature was created to indicate missing records from the
Pathology and Prescriptions datasets (i.e., no record=1). All other missing
values were coded to 0, defined as having no evidence of that characteristic
since patients may have attended clinics outside of ACCESS where these
values were recorded. Prescription data were linked to the Australian
Pharmaceutical Benefits Scheme using text-matching between medication
names to create a categorical feature of medication types (Supplementary
Table 2). All categorical variables were one-hot-encoded, to represent each
category as a binary vector. Features with ≥99% constant values were
removed, leaving a final set of 88 features used for model input (Supple-
mentary Table 1) across four data groups (Table 4).

Data preprocessing was conducted in Stata 17.0 SE-Standard Edition
using the ACCESS reference datasets which are stored as Stata data file
format (.dta).

Machine learning algorithm
Random forest was used to create binary classifiers. Random Forest builds
an ensemble of decision trees. Each tree is fitted on bootstrapped subsets of
the training data and uses random feature subsets, ensuring random var-
iation and low correlation between decision trees. The predicted class label
for each patient is the class that receives the most votes from the individual
decision trees37.

Random forest has several attributes that made it a suitable choice for
use in this study and potentially increases the acceptability and utility of the
model developed. Firstly, random forest has been designed to work on
similarly complex datasets, is commonly used for a broad range of classi-
fication and phenotyping tasks, has shown good predictive performance
using patient EMR data11,38,39, and consistently outperforms other methods
for classification40,41. Secondly, random forest has the benefit of very few
assumptions, and is robust to noisy data, simplifying data preparation and
making it more straight forward to deploy42. Finally, random forest is more

user-friendly and transparent than other algorithms which is important for
healthcare professionalswhooftenneed tounderstand and trust themodel’s
decisions23,24,42.

We constructed our model using the Scikit-learn library in Python43.
We used a 70:30 training/testing data split and optimized the model’s
hyperparameters using the library’s RandomizedSearchCV function. This
method of hyperparameter tuning involved randomly sampling a set of
hyperparameters from predefined ranges (Supplementary Table 3) with
5-fold cross-validation and testing 100 unique combinations to identify the
configuration that yields the best performance (Supplementary Table 4).

Class label and labeled dataset
To create the positive class label, we examined short text fields in the Clinic
Visits, Prescriptions, and Tests Requested datasets where the reason for
patient encounter is recorded by healthcare providers for less than 50% of
EMRs. The following clinical termswere identified in the text: “iv drug use”,
“iv drug abuse”, “ivdu”, “injects drugs” and “injecting”. The terms were
selected in consultation with subject matter experts and annotated by an
experienced BBV/STI epidemiologist.

A total of 2422 patients in the ACCESS database had EMRs con-
taining text matching one of these terms and were assigned the positive
class label. The prevalence of people who have injected drugs is estimated
to be approximately 0.6% in Australia44.We therefore created a balanced
labeled dataset to mitigate bias toward predicting the majority nega-
tive class.

Since IDU is not systematically screened for in clinics or recorded in
EMRs we do not have a reference group of truly negative labels. Therefore,
we randomly sampled an equal number of patients from the remaining
unlabeled ACCESS EMRs and assigned them the negative class label. Note
that we sampled from the remaining unlabeled EMRs repeatedly as part of
the iterative process (described below).

We used descriptive statistics and the chi-squared test to summarize
and compare selected patient characteristics between the assigned classes in
the initial labeled dataset, applying a significance threshold of 0.05. A
Bonferroni correction was used to adjust for multiple comparisons.

Interactive machine learning
To phenotype people who have injected drugs we applied an iterative
approach of feature exploration incorporating humans-in-the-loop to
provide expert knowledge beyond the labeled dataset45 (Fig. 4). Thismethod
was designed to address the challenges associated with high-dimensional
and inconsistently completeEMRdata containing a small number of known
positive examples among a very large database of patients with unknown
IDU and no true negative examples20.

Fig. 4 | Overview of the iterative process incorporating subject matter expertise.
The balanced labeled dataset is created by joining the positive labels with an equal
number of randomly sampled EMRs that are assigned the negative label. The
balanced labeled dataset is used to train and test themodel. False positive predictions
that have been relabeled are added to the positive labels and the most important
feature identified is removed.

Table 4 | Summary of features created and mapped from the
variables in each ACCESS dataset

Dataset/Data groups Model features

Demographics Year of birth grouped by generation and
one-hot-encoded
Gender categories one-hot-encoded
Region of birth one-hot-encoded
Languages grouped and one-hot-encoded
Aboriginal status one-hot-encoded
Postcode grouped by geographic region
and one-hot-encoded
Postcodes grouped by SEIFA and one-hot-
encoded
Unique postcodes counted

Clinic visits Total number of clinical visits
Total number of unique clinics visited
Total number of unique clinic types visited
Year of visit binned and one-hot-encoded
Type of clinic visited one-hot-encoded
Healthcare provider type at visit one-hot-
encoded
Type of visit grouped and one-hot-encoded
Total time in years between first and last visit

BBV/STI pathology a Test rate
Negative result one-hot-encoded b

Positive result one-hot-encoded b

Positive test rate b

Binary feature created for patients with no
pathology record

Prescriptions Medicines grouped by type and one-hot-
encoded
Binary feature created for patients with no
prescription record

BBV blood-borne virus, STI Sexually transmissible infection. aOne dataset for each of the following
BBVsandSTIs: chlamydia, gonorrhoea, syphilis, human immunodeficiency virus (HIV), andhepatitis
C virus (HCV), b HCV results excluded.
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Touncoveruncommonphenotypes,we initially trained amodel on the
labeled dataset with all 88 features and tested its performance on the testing
data. The features were ranked in order of Gini feature importance, which is
based on reduced impurity computed during training. We removed the
most important feature in each iteration before training a new model
thereby incrementally reducing the number of features to reveal new
important features for predicting the class labels.

We also used the iterative approach to improve the quality of the
predictions by increasing the representativeness of the labeled
dataset23,24. In each iteration, the class labels were predicted on both the
training and testing data. Patients assigned the negative class label who
were predicted positive by the model, i.e., false positive predictions, are
potentially “hidden” patients with feature combinations resembling
those of people who have injected drugs but without direct indications of
IDU in their EMRs.

A subject matter expert manually reviewed the longitudinal EMRs of
false positive predictions for other supporting evidence of IDU and con-
servatively relabeled them from negative to positive if they met a set of
criteria, adding new positive labels before training a new model in the
subsequent iteration (Supplementary Notes 1, Supplementary Table 5). To
maintain balance, a new randomsample of unlabeledACCESSEMRs, equal
to the new total number of positive class labels, was assigned the negative
class label. The iterative process was repeated until there was no plausible
explanation for the highest-ranking feature, or no new false positives were
relabeled on manual review (Supplementary Notes 2, Supplementary
Table 6).

Predictive performance
Each model’s performance was evaluated by comparing the predicted class
labels to the assigned class labels using the testing data. We calculated the
following evaluation metrics: accuracy (correct predictions/total records)
with unadjusted 95% confidence intervals calculated using theWilson score
interval method, precision (positive predictive value: true positive predic-
tions/total positive predictions), recall (sensitivity: true positive predictions/
total assigned positive labels), and F1-score (harmonic mean of precision
and recall).

To further enhance our understanding of model behaviors and deci-
sions we conducted an error analysis of false positive and false negative
predictions on the initial model. In doing so, we applied an Anchor analysis
using theAlibi Explain Python library46 tofind theminimal set of features in
the decision path leading to these predictions. Interpretation and discussion
of these results is included in Supplementary Notes 3 and Supplementary
Tables 7, 8.

Final model
A final model was trained and tested using the labeled dataset including
the relabeled records and all 88 features from the initial model. The
model was evaluated using the performance metrics described above.
Further post-hoc analyses were conducted on the testing data using
SHapley Additive exPlanations (SHAP) to provide the directionality
and magnitude of the input features’ contributions to the model
predictions47.

To further demonstrate themodel performance and function, the final
model was applied to an unlabeled dataset containing all ACCESS patients
with records in the Demographics and Clinic Visits datasets. The same 88
features were prepared for all patients. We report the total number and
percentage of patients predicted positive by the model compared to a rule-
based approach that uses existing indications of IDU.

We have reported our model development and evaluation using the
IJMEDI Checklist for the (Self)-Assessment of Medical AI (ChAMAI)48.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Data used in this study are from the Australian Collaboration for Coordi-
nated Enhanced Sentinel Surveillance of blood-borne viruses and sexually
transmissible infections (ACCESS) and are not publicly available. The data
can be made available upon reasonable request via ACCESS Data Man-
agement https://accessproject.org.au/contact.

Code availability
The code used in this studyhasnot beenmadepublicly available because it is
highly specific to the dataset and the expert input incorporated, hence
requiring extensive adaptation for use in other research. A step-by-step
experimental protocol has been included in the supplementary material
(Supplementary Table 9).
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